
01

Audit Report
August, 2021

https://audits.quillhash.com/smart-contract-audit

Contents

Scope of Audit 01

02

03

04

09

10

11

Techniques and Methods

Issue Categories

Issues Found – Code Review/Manual Testing

Summary

Automated Testing

Disclaimer

050401

The scope of this audit was to analyze and document the Citrus Token
smart contract codebase for quality, security, and correctness.

We have scanned the smart contract for commonly known and more
specific vulnerabilities. Here are some of the commonly known
vulnerabilities that we considered:

Scope of Audit

Checked Vulnerabilities

Re-entrancy

Timestamp Dependence

Gas Limit and Loops

DoS with Block Gas Limit

Transaction-Ordering Dependence

Use of tx.origin

Exception disorder

Gasless send

Balance equality

Byte array

Transfer forwards all gas

BEP20 API violation

Malicious libraries

Compiler version not fixed

Redundant fallback function

Send instead of transfer

Style guide violation

Unchecked external call

Unchecked math

Unsafe type inference

Implicit visibility level

0502

Techniques and Methods
Throughout the audit of smart contract, care was taken to ensure:

The overall quality of code.
Use of best practices.
Code documentation and comments match logic and expected behaviour.
Token distribution and calculations are as per the intended behaviour
mentioned in the whitepaper.
Implementation of BEP-20 token standards.
Efficient use of gas.
Code is safe from re-entrancy and other vulnerabilities.

The following techniques, methods and tools were used to review all the
smart contracts.

Structural Analysis
In this step we have analyzed the design patterns and structure of smart
contracts. A thorough check was done to ensure the smart contract is
structured in a way that will not result in future problems.
SmartCheck.

Static Analysis
Static Analysis of Smart Contracts was done to identify contract
vulnerabilities. In this step a series of automated tools are used to test
security of smart contracts.

Code Review / Manual Analysis
Manual Analysis or review of code was done to identify new vulnerability
or verify the vulnerabilities found during the static analysis. Contracts were
completely manually analyzed, their logic was checked and compared with
the one described in the whitepaper. Besides, the results of automated
analysis were manually verified.

Gas Consumption
In this step we have checked the behaviour of smart contracts in
production. Checks were done to know how much gas gets consumed and
possibilities of optimization of code to reduce gas consumption.

0203

Tools and Platforms used for Audit
Remix IDE, Truffle, Truffle Team, Ganache, Solhint, Mythril, Slither,
SmartCheck.

Low level severity issues

Informational

Medium level severity issues

High severity issues

Issue Categories

Low level severity issues can cause minor impact and or are just warnings
that can remain unfixed for now. It would be better to fix these issues at
some point in the future.

These are severity four issues which indicate an improvement request, a
general question, a cosmetic or documentation error, or a request for
information. There is low-to-no impact.

The issues marked as medium severity usually arise because of errors and
deficiencies in the smart contract code. Issues on this level could potentially
bring problems and they should still be fixed.

A high severity issue or vulnerability means that your smart contract can be
exploited. Issues on this level are critical to the smart contract’s
performance or functionality and we recommend these issues to be fixed
before moving to a live environment.

Every issue in this report has been assigned with a severity level. There
are four levels of severity and each of them has been explained below.

0404

Number of issues per severity

Introduction

During the period of August 11, 2021 to August 15, 2021 - QuillAudits Team
performed a security audit for Citrus smart contracts.

The code for the audit was taken from the following official link:
https://github.com/CitrusTech/CitrusTechContract/blob/master/
CitrusToken.sol

Open

Type High

Closed

Acknowledged

Low

1 2

0

0

0

0

00

0

2

0

1

Medium Informational

Note Date Commit hash

Version 1 August e50a2a983928c10b76e6bc374ae6267f51af99b6

https://github.com/CitrusTech/CitrusTechContract/blob/master/CitrusToken.sol

0505

1.

2.

Issues Found – Code Review / Manual Testing

High severity issues

Unnecessary use of require statement

Does not use the value returned by external calls

Line Code

111 require(amount > 0, "TimeLock: Amount cannot be zero");

Line Code

127 BEP(address(this)).transfer(msg.sender, amount);

Description
As the function can be only called by ‘Owner’, the use of require
statement will only consume more gas, as an owner can instruct to not
use 0 as a value while locking to waste Gas.

Remediation
Remove require statement to save GAS.

Description
The return value is not used when a function is returning a value.

No issues were found.

No issues were found.

Status: Acknowledged by the Auditee.
Auditee Comments: The gas difference is negligible.

Medium severity issues

Low level severity issues

0506

Remediation
Use Require statement.

require(BEP(address(this)).transfer(msg.sender, amount));

Status: Open

Informational

Does not use safemath for operations

Public function that could be declared external

3.

4.

Description
Safemath operation is missing where operators are used directly without
considering overflow and underflow.

Remediation
Use Safemath at all operations.

Description
The following public functions that are never called by the contract
should be declared external to save gas:

wned.changeOwnership (./citrus.sol#10-12) should be declared
external
BEP20.balanceOf (./citrus.sol#38) should be declared external
BEP20.transferFrom (./citrus.sol#48-55) should be declared
external
BEP20.approve (./citrus.sol#57-61) should be declared external
BEP20.allowance (./citrus.sol#63-65) should be declared external
TimeLock.timelock (./citrus.sol#110-118) should be declared external
TimeLock.release (./citrus.sol#120-133) should be declared external
TimeLock.lockedAccountDetails (./citrus.sol#135-151) should be
declared external

Status: Acknowledged by the Auditee.
Auditee Comments: We don't have any such functionality where
Safemath is required, so we didn't use it.

0507

Remediation
Use the external attribute for functions that are never called from the
contract.

Status: Open

Status: Open

Use Transfer Event in Constructor

Use Require statement for multiple checks in transfer event

5.

6.

Description
It will be safer if the mint function is used in the Constructor, to mint the
initial supply of tokens instead of directly updating the balances and
total supply variables.

Remediation
emit Transfer(address(0), account, amount);

Description
The transfer function in the BEP20 contract is missing the require
statements.

Remediation
a) In function transfer(address _to, uint256 _amount) , missing:

require(_to != address(0), "BEP20: transfer from the zero address");

b) In function transferFrom(address _from,address _to,uint256 _amount)
require(_from != address(0), "BEP20: transfer from the zero address");
require(_to != address(0), "BEP20: transfer to the zero address");
which is advisable to add in the beginning of both the fuctions.

Status: Acknowledged by the Auditee.
Auditee Comments: We have taken care of ‘require’ at the consumer level.

0508

.Functional test

Function Names Technical
Result

Logical
Result

Overall
Result

Read Functions()

allowance

balanceOf

decimal

lockedAccountDetails

name

owner

symbol

totalSupply

Write Functions()

approve

burn

changeOwnership

mint

transfer

transferFrom

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

Passed

0509

Automated Testing

Slither

Results
No major issues were found. Some false positive errors were reported by
the tool. All the other issues have been categorized above according to
their level of severity.

0510

Disclaimer

Quillhash audit is not a security warranty, investment advice, or an
endorsement of the Citrus platform. This audit does not provide a security
or correctness guarantee of the audited smart contracts. The statements
made in this document should not be interpreted as investment or legal
advice, nor should its authors be held accountable for decisions made
based on them. Securing smart contracts is a multistep process. One audit
cannot be considered enough. We recommend that the Citrus Team put in
place a bug bounty program to encourage further analysis of the smart
contract by other third parties.

0511

Closing Summary

Overall, smart contracts are very well written and adhere to guidelines.

No instances of Integer Overflow and Underflow vulnerabilities or Back-
Door Entry were found in the contract, but relying on other contracts might
cause Reentrancy Vulnerability.

Some low severity issues were detected; it is recommended to fix them.

17

https://audits.quillhash.com/smart-contract-audit
https://audits.quillhash.com/smart-contract-audit

